Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(7): 3737-3746, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600864

RESUMO

Notwithstanding the extensive research efforts directed towards devising a dependable approach for the diagnosis of coronavirus disease 2019 (COVID-19), the inherent complexity and capriciousness of the virus continue to pose a formidable challenge to the precise identification of affected individuals. In light of this predicament, it is essential to devise a model for COVID-19 prediction utilizing chest computed tomography (CT) scans. To this end, we present a hybrid quantum-classical convolutional neural network (HQCNN) model, which is founded on stochastic quantum circuits that can discern COVID-19 patients from chest CT images. Two publicly available chest CT image datasets were employed to evaluate the performance of our model. The experimental outcomes evinced diagnostic accuracies of 99.39% and 97.91%, along with precisions of 99.19% and 98.52%, respectively. These findings are indicative of the fact that the proposed model surpasses recently published works in terms of performance, thus providing a superior ability to precisely predict COVID-19 positive instances.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Redes Neurais de Computação , Teste para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...